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Quasistationary Distributions

Assumptions
Y = (Yt : t ∈ Z+) A discrete-time MC on a finite state space Ω ∪∆ with TF p and

I ∆ is absorbing: Pδ(Y1 ∈ ∆) = 1, δ ∈ ∆;

I ∆ accessible from Ω.

I The restriction of p to Ω× Ω, p|Ω, is irreducible.

Define the absorption time

τ = inf{t ∈ Z+ : Yt = ∆}.

From assumptions, τ has geometric tails.

All Stationary distributions supported on ∆, so the next best thing may be

Definition 1 (QSD)
A probability distribution ν on Ω is a quasistationary distribution (QSD) if

Pν(Yt ∈ · |τ > t) = ν, t ∈ Z+.

Note
I Everything has to end. How would it look if it lasted very long?
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General Results

Proposition 1 (QSD Characterization)
A probability vector ν on Ω is a QSD if and only if it is a left Perron Eigenvector for
p|Ω. That is,

νp|Ω = λν (1)

for some (any) λ. In this case λ is the Perron eigenvalue/spectral radius for p|Ω

Note
When Ω is infinite (still irreducible): Existence and Uniqueness are not guaranteed (all
possibilities can be realized through B&D on Z+).

Probability notation
For every initial distribution µ on Ω and t ∈ Z+,

Pµ(Yt = ·, τ > t) = µp|tΩ(·)

Thus with ν the QSD
Pν(τ > t) = ν(p|Ω)t1Ω = λt .

We have

Corollary 1

1. The distribution of τ under Pν is Geom(1− λ).

2. λ = lim
t→∞

(Px (τ > t))1/t = lim
t→∞

(max
x

Px (τ > t))1/t = max
x

( lim
t→∞

Px (τ > t)1/t).
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Convergence Theorem

In analogy to stationary distributions we have:

Theorem 1 (Convergence to QSD)
If, in addition, p|Ω is aperiodic, then for any initial distribution µ on Ω

lim
t→∞

Pµ(Yt ∈ · |τ > t) = ν.

Note
I From linear algebra,

‖Pµ(Yt ∈ · |τ > t)− ν‖TV = O((
|λ2|
λ

)t),

where λ2 is a subdominant eigenvalue for p|Ω. This may decay faster than
P(τ > t), and so QSD may be observed early in the evolution.

I Nevertheless, in principle sampling QSDs through simulations is a challenge as
they emerge as limits under geometrically vanishing events.
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Example: RW on the Cycle
Example 2 (QSD for RW on cycle)
Consider simple symmetric RW on the N-cycle ZN = {0, . . . ,N − 1}, with 0 as absorbing state.
The matrix p|Ω is as in the Figure below.

1 2 3 4 N-4 N-3 N-2 N-1

A
b
so
rp
tio

n

A
b
so
rp
tio

n
ρρ

1− 2ρ

Figure: RW absorbed at 0

I The QSD is a probability ν on {1, . . . ,N − 1} (extend it to ZN by setting ν(0) = 0)
satisfying (1):

ν(x − 1)p(x − 1, x)

ρ

+ ν(x)p(x, x)

(1− 2ρ)

+ ν(x + 1)p(x + 1, x)

ρ

= λν(x).

I The solution is then {
ν(x) = CN sin( x

N π) (CN = tan π
2N );

λ = ρ
2 cos πN + (1− 2ρ)

(2)

Observations
I Density higher away from absorbing state.

I Continuum limit of model and respective QSD: BM on [0, 1] absorbed at endpoints.
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Discrete-time Voter and Invasion
Models describing evolution of “opinions” on a graph in different “cultures”.

Setup

I G = (V ,E) finite, connected graph.

I State space: assignments of opinions, functions η : V → O, where O is the set
of “opinions”. We often take either O = {0 = “no”, 1 = “yes”} or O = V . For a
state η, η(v) is the opinion of v .

Time Evolution
At time t ∈ Z+, opinions are ηt . We sample

I Uniformly a vertex u and a uniformly a neighbor v independently of the past;

I Assign opinions as follows:
Voter

ηt+1(x) =

{
ηt(v) x = u

ηt(x) otherwise

Invasion

ηt+1(x) =

{
ηt(u) x = v

ηt(x) otherwise

Note
I The constant assignments (e.g. all “no”), also known as consensus states. are

the absorbing set ∆.

I Representing two extreme “cultures”: Voter dominated by obedience (?), and
Invasion dominated by, well, desire to dominate (?).
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(Sightly) More general evolution

In both models, the dynamics is determined only through IID sampling of ordered
edges that easily generalizes to

Definition 2 (General Evolution)
Let ρ be a probability measure on the set of order pairs {(v , u) : {v , u} ∈ E , u 6= v},
with full support. Define an evolution on assignments of opinions as follows:

I At time t ∈ Z+ sample (v , u) according to ρ, independently of the past.

I At time t + 1 assign the opinion of v to u and keep all other opinions unchanged:

ηt+1(x) =

{
ηt(v) x = u

ηt(x) otherwise

Example 3

Voter Invasion

ρ(v , u) = 1
|V |

1{u,v}∈E
deg(u)

= ρ(u, v)

Voter and Invasion dynamics identical iff constant degree graph.
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Reverse Chains

How did I get my opinion?

Reverse Chains
I Whose opinion at the previous time step u has now?

I It is v ’s opinion if (v , u) was sampled.
I It is u’s opinion if (·, u) was not sampled.

I This gives a MC on V which is tracing the opinions back in time. It has a
transition function q, given by

q(u, v) =

{
ρ(v , u) = ρ(v |u)ρ2(u) v 6= u

1− ρ2(u) v = u,

where ρ2(u) =
∑

v ρ(v , u) is the second marginal of ρ.

Example 4 (Reverse Chains)
Voter

RW on V :

I ρ2 is uniform on V ; and

I ρ(·|u) uniform on neighbors of u.

Invasion

Conditioned on a transition, probability is
reciprocal to degree of target vertex:

I ρ2(u) = 1
|V |
∑
{u′,u}∈E

1
deg(u′) ; and

I ρ(·|u) =
1

deg(·)∑
{u′,u}∈E

1
deg(u′)

.
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Duality with Reverse Opinion Flow

Initial opinion distribution and the flow of opinions back in time determine the distribution of the
process. This flow is a family Z of coalescing chains:

Definition 3 (Reverse Flow/Coalescing Reverse Chains)
Let Z = (Zt(u) : u ∈ V , t ∈ Z+) be the process

I For u ∈ V , set Z0(u) = u.

I At t ∈ Z+, sample (V,U) according to ρ.

I AT time t + 1, set all chains currently in U at time t to V and keep all others where they are.

Zt+1(u) =

{
V if Zt(u) = U
Zt(u) otherwise

Interpretation
I For u ∈ V , (Zt(u) : t ∈ Z+) is a MC with TF q starting from u, and which represents (in

distribution) the vertex whose opinion t units back in time u currently holds.

I The same holds jointly over u ∈ V and t ∈ Z+.

I When Z·(u) and Z·(u
′) meet, they coalesce. In terms of opinion flow: the opinion lineage

for u and u′ from that point backward in time is the same.

Note
This duality is well-known and documented for continuous-time Voter model: see Durrett (1988);
Aldous and Fill (2002); Oliveira (2012) and references therein.
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Coincidence of Tail Behavior

Why reverse flow?

I Past: key tool for analysis of Voter model (mostly on infinite state spaces like Zd )
for getting probability of consensus, distribution of time for absorption, joint
distribution of opinions at pairs or more vertices, etc.

I Our work: Access to λ by reducing the eigenvalue problem to tails of coalescence
time of two reverse chains.

Let

σu,u′ = inf{t ∈ Z+ : Zt(u) = Zt(u′)} (coalesence time of u, u′)
σ = maxu,u′ σu,u′ (coalescence time of Z)

λCMC = limt→∞(P(σ > t))1/t (geometric tail of σ)

Before we continue, we recall (Proposition 2) that the QSD ν is a left eigenvactor for
p|Ω corresponding to the Perron eigenvalue λ:

νp|Ω = λν

Theorem 5
Under General Evolution, Definition 2:

1. λCMC = max
u,u′

lim
t→∞

(P(σu,u′ > t))1/t = lim
t→∞

(max
u,u′

P(σu,u′ > t))1/t .

2. λ = λCMC .
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Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



12/24

Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



12/24

Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



12/24

Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



12/24

Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



12/24

Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Thus, the sum of the “j”-th column of p|Ω is

(j − 1)(n + 1)

n(n − 1)
+

(n − j − 1)(n + 1)

n(n − 1)
=

(n − 2)(n + 1)

n(n − 1)

=
(n − 1)n − n + (n − 2)

n(n − 1)
= 1−

2

n(n − 1)
= λ.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



12/24

Example: Complete Graph

Example 6 (Voter on Complete Graph)
Consider the Voter model on Kn, the complete graph with n vertices.

I Here ρ is uniform over the n(n − 1) directed edges.

I For any two distinct vertices u, u′

σu,u′ ∼ Geom(
2

n(n − 1)
) =⇒ λ = λCMC = 1−

2

n(n − 1)
. (4)

I To calculate the QSD, identify all states with j = 1, . . . , n− 1 “yes” opinions as a
single class, and write ν(“j”) for probability of this class (of

(n
j

)
states).

I Class “j” can be reached from either “j − 1”, “j”, “j + 1” with respective
transition probabilities:

(j − 1)(n − j + 1)

n(n − 1)
,
j(j − 1)

n(n − 1)
+

(n − j)(n − j − 1)

n(n − 1)
,

(j + 1)(n − j − 1)

n(n − 1)
.

I Concluding: the column-sum is independent of “j”, which implies that ν, the left
eigenvector corresponding to λ is constant, or:

ν(“j”) =
1

n − 1
.



13/24

Example: Voter on the Cycle

Example 7 (Voter model on the Cycle)
Consider now the Voter model on the cycle ZN .

I Each non-absorbing state induces an even number of interfaces between “yes”
and “no”.

I The evolution corresponds to movement of these interfaces. Each step either:

I None of the interfaces move.
I One interface moves in either direction equally likely; and
I When two interfaces meet, they are both eliminated.

I The number of interfaces will eventually reach two.

Figure: Initial opinion assignment

Figure: Down to two interfaces, completed

Conclusions

I The QSD is supported on the states with exactly two interfaces.

I Under p|Ω, the number of “yes” between the two interfaces performs a symmetric
RW, absorbed at 0 and N.

I A comeback! The QSD is the same as for the RW from Example 2.
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Example: Cycle, continued

Recall the QSD from Example 2:

ν(x) = tan(
π

2N
) sin(

xπ

N
), x = 1, . . . ,N − 1.

What we actually proved is

Proposition 2
The QSD for the Voter model on ZN is a rotationally invariant distribution on “yes”
and “no” opinions with a single contingent cluster of “yes” opinions distributed
according to ν.

Questions
I What about QSD for system conditioned to have more than two contingent

clusters?

I ZN × ZN?
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Complete Bipartite Graph

Setup
G is the complete bipartite graph Km,n:

I V : the disjoint union of partitions S and L, |S | = m, |L| = n;

I E : all sets of the form {s, `}, s ∈ S , ` ∈ L.

Note
I Rudimentary network with a small number of highly connected agents, and a

large number of agents with low connectivity.

I Extensive literature on Voter model and very little on QSD for model, so good
place to start, I guess.

I In our work: m fixed while n→∞.

1 2 3 . . . . . . n − 2 n − 1 n

1 2 . . . . . . m − 1 m

L

S
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Voter on Complete Bipartite
Motivation and simulations

Our work was motivated by a series of lectures by Sidney Redner given in NetSci2019.
The version of the following simulation presented at the talks is what started it for me.

Simulation of the Voter model on K200,1000.

Observation
Starting from all “yes” in S , “no” in L, the system rapidly enters a long period
(“metastable”) where the proportions are roughly the same, where it performs a RW
that is slowed down near consensus.

Question
QSD?

https://www.santafe.edu/people/profile/sidney-redner
http://www.netsci2019.com/
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Voter on Complete Bipartite
MCREU ‘19 with Hugo Panzo and then undergrads Philip Speegle and Oliver Vandenberg

Proposition 3
Consider the Voter model on Km,n. Then

λCMC = λn,m = 1−
2

n + m

(
1−

√
1−

1

2n
−

1

2m

)
= 1−

γm,n

n + m
. (5)

Note
I Proof relies on the simple structure of the graph and the reverse chains, which

reduces the calculation to a two-state Markov chain (states: walks are in same or
different partition).

I

γm = lim
n→∞

γm,n = 2
(

1−
√

1−
1

2m

)
∼

m→∞

1

2m
. (6)

I The exact form in (5) is crucial for studying the QSD as n→∞ because the
QSD eigenvector equation in Proposition 1 reduces to a triviality.



18/24

Sibuya: Discrete Heavy Tailed Distributions

Sibuya Distributions
The Sibuya distribution with parameter γ ∈ (0, 1). This is a probability distribution
on N with generating function φγ and PMF pγ(z) given by

φγ(z) = 1− (1− z)γ

=
∞∑
k=1

(k − 1− γ)(k − 2− γ) · · · (1− γ)γ

k!︸ ︷︷ ︸
=pγ (k)

zk

As a result, Sib(γ) is heavy-tailed with

pγ(k) ∼ cγ
1

kγ+1
, cγ =

sin(γπ)

π
Γ(1 + γ).
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QSD Asymptotics for Voter

Theorem 8
Let C ∼ Bern( 1

2
) and D ∼ Sib(γm) be independent with

γm
(6)
= 2

(
1−

√
1−

1

2m

)
.

Then the QSD for the Voter model on Km,n converges as n→∞ to:

1. All vertices of S take opinion C.

2. All but D vertices of L have opinion C.

Note
I Exact formula for λCMC from Proposition 3 is key to analysis, and leads to

showing that S reaches consensus. With this

I QSD equation essentially reduces to difference equation for dissenting opinions in
L.



20/24

QSD Asymptotics for Invasion
with MCREU ‘20 undergrads Van Hovenga and Edith Lee

This is where a hybrid system shows up!

Two differences
I No nice closed-form expression for λCMC : the reverse chain reduces to a three

state chain with nasty characteristic polynomial.

I And, no consensus on either partitions. While in Voter, S reaches consensus, here
it keeps changing nearly all the time.

Proposition 4
Consider the Invasion process on Km,n. Then

λCMC = 1−
2m

n2(n + m)
+ o(n−3) (7)

Note
I The proof of the proposition is based on the Taylor expansion for the Perron

eigenvalue, and the first nontrivial term is obtained from the Hessian.
I Absorption times under QSD are Geom(1− λ). Expectations:

I Invasion: ∼ n3

2m .
I Voter, (5),(6): ≈ 2mn (when m is also large).
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QSD Asymptotics for Invasion
with MCREU ‘21 undergrads Clay Allard, Shrikant Chand and Julia Shapiro

Switch from counting opinions in L to proportions of opinions, leading to the
introduction of ν̄ on {0, . . . ,m} × [0, 1]:

ν̄(k, dx) = ν(k, nx)δ{0,...,n}(nx) (8)

We have the following:

Theorem 9
Consider the Invasion model on Km,n. Then as n→∞,

ν̄(k, dx)⇒
(n
k

)
xk (1− x)m−kdx . (9)

In particular,

1. At the limit both marginals are uniform on {0, . . . ,m} and [0, 1], respectively.

2. The first marginal conditioned on the second equals x: Bin(m, x).

3. The second marginal conditioned on the first equals k: Beta(k + 1,m − k + 1).

Observations
I In contrast to Voter, here QSD is very far from consensus.

I The second marginal corresponds to the QSD for the Wright-Fisher diffusion

generator 1
2
x(1− x) d2

dx2 on [0, 1] absorbed on the boundary.

I A hybrid system emerges: first-order terms give the discrete part, and higher
(smaller) order terms give the continuous part.
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Derivation of QSD for Invasion

Step 1. Rearrangement
The QSD equation (1) can be rearranged as

S(k, l) +L(k, l)−1∆(k, l)(S(0, 0) + L(0, 0)) = (λ− 1)ν(k, l) with∑
k S(k, l) = 0 ∑

l L(k, l) = 0.

I S(k, l): Associated with (v , u) ∈ L× S, probability n
n+m

∼ 1

I L(k, l): Associated with (v , u) ∈ S × L, probability m
n+m

= O(n−1)

I Capturing absorption

I Adjustment so L and S can be expressed as sums of differences. From
Proposition 4, λ− 1 ∼ 2m

(m+n)n2 .

Step 2. Switch to proportions on L
Replace second component by proportion, giving∫

f (k, x)dS̄(k, x) +
∫
f (k, x)dL̄(k, x) +λ−1

2
(f (0, 0) + f (m, 1)) = (λ− 1)

∫
f (k, x)d ν̄∫

S̄(dk, x) = 0 ∫
L̄(k, dx) = 0

(10)

Step 3. First component

The unique solution is

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−k ν̄∞,2(dx) (11)

equivalently ν∞(dk|x) ∼ Bin(m, x) under any subsequential limit.
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Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Use a smooth bounded test function f = f (x) in the representation (10) to
eliminate integral WRT to S̄.

I Use Taylor expansion for f and explicit form for L̄ to obtain∫
f (x)dL̄ =

1

(m + n)n

∫
(k(1− x)− (m − k)x) f ′(x)d ν̄

+
1

2(m + n)n2

∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄

+ o(n−3)

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain

2

∫
x(1− x)f ′′(x)ν̄∞,2(dx) + o(n−1)

= −4m

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Use Taylor expansion for f and explicit form for L̄ to obtain∫
f (x)dL̄ =

1

(m + n)n

∫
(k(1− x)− (m − k)x) f ′(x)d ν̄

+
1

2(m + n)n2

∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄

+ o(n−3)

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain

2

∫
x(1− x)f ′′(x)ν̄∞,2(dx) + o(n−1)

= −4m

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Use Taylor expansion for f and explicit form for L̄ to obtain∫
f (x)dL̄ =

1

(m + n)n

∫
(k(1− x)− (m − k)x) f ′(x)d ν̄

+
1

2(m + n)n2

∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄

+ o(n−3)

I Curse: remaining terms in (10) are O(n−3) so only conclusion is that first
integral on RHS is equal to some cn(f ) which tends to 0.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain

2

∫
x(1− x)f ′′(x)ν̄∞,2(dx) + o(n−1)

= −4m

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Use Taylor expansion for f and explicit form for L̄ to obtain∫
f (x)− cn︸︷︷︸

=o(1)

xdL̄ =
1

2(m + n)n2

∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄ + o(n−3)

I Blessing: subtract a linear term of the form cnx from f to eliminate that first
integral.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain

2

∫
x(1− x)f ′′(x)ν̄∞,2(dx) + o(n−1)

= −4m

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Use Taylor expansion for f and explicit form for L̄ to obtain∫
f (x)− cn︸︷︷︸

=o(1)

xdL̄ =
1

2(m + n)n2

∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄ + o(n−3)

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄ + o(n−1)

= 2(m + n)n2(λ− 1)

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄ + o(n−1)

= 2(m + n)n2(λ− 1)

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄ + o(n−1)

= −4m

(∫
f − cnxd ν̄ +

f (0) + f (1)− cn

2

)
+ o(1).

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little

I From (11),
∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain∫
(k(1− x) + (m − k)x) f ′′(x)d ν̄

= −4m

(∫
fd ν̄ +

f (0) + f (1)

2

)
+ o(1).

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain

2

∫
x(1− x)f ′′(x)ν̄∞,2(dx)

= −4m

(∫
fd ν̄ +

f (0) + f (1)

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued
Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Plugging this into (10) and multiplying by 2(m + n)n2 we obtain

2

∫
x(1− x)f ′′(x)ν̄∞,2(dx)

= −4m

(∫
fd ν̄ +

f (0) + f (1)

2

)
.

I From Proposition 4, (λ− 1) ∼ −2m(m + n)−1n−2

I cn = o(1), so clean a little
I From (11),

∫
kν̄∞(dk|x) = mx .

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued

Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued

Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



23/24

Derivation of QSD for Invasion, Continued

Step 3 gave ν̄∞(dk|x) ∼ Bin(m, x). It’s left to determine ν̄∞,2.

Step 4. Second Component
More work: To access distribution of second component need to eliminate terms of
higher order of magnitude.

I Rearranging, end up with∫
x(1− x)f ′′(x) + 2f (x)d ν̄∞,2(x) = f (0) + f (1), (12)

for all subsequential limits.

I Using polynomials as the test function f in (12) gives a recurrence relation for the
moments of ν̄∞,2 whose unique solution is U[0, 1].

I In conclusion, we showed that for subsequential limit,

ν̄∞(k, dx) =
(m
k

)
xk (1− x)m−kdx .

Thus a limit exists and is of the form above.

�



24/24

Thank you. Special thanks to organizers.


