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Setup

Assumption 1

Let X = (X::t € Z) be MC on a countable state space S U {A} w/transition
function p.

1. A is a unique absorbing state: p(A,-) = da(:).
2. The restriction of p to S X S is irreducible.

Let 7o denote the absorption time:

Ta =inf{t e N: X; = A}

3. There exists 3 > 0 such that Ex[exp(87a)] < oo for some (equivalently all)
x € S.

Definition 1 (QSD)
A probability measure v on S is a Quasistationary Distribution if
Pu(Xt €| ma>t)=v()

forallt € Z4.



Basic Properties
Proposition 1

» (Necessary condition) If v is a QSD, then under P,, Tpn has a geometric
distribution with parameter 1 — e=> for some A > 0.

P,(ra >t)=e > teZ,. (1)

» )\ is called the absorption parameter for v.

> (Eigenvector) A probability measure v on S is a QSD with absorption parameter
X if and only if it is an e~ *-invariant probability measure for p:

vp = e .
» Equivalently, v satisfies the non-linear eigenvalue equation:

vp = (vp))v.

Note. (1) explains why we assume finiteness of exponential moments for 7a and is
useful in proving non-existence.

Proposition 2 (Quasi-limiting = QSD)
A probability measure v on S is a QSD if and only if

tl_l)rgo Pu(Xt € - | Ta > t) = v for some initial distribution .
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A Critical Parameter

Definition 2 (Critical Absorption Parameter)

> Let
Aer = sup{A > 0 : Ex[exp(ATa)] < oo for some x € S}. (2)

In words: the tail of Tp decays geometrically like t — e~ *ert under Py for every
x € S.
> A QSD with absorption parameter \¢r is called minimal.

Corollary 3

1. Aer € (0,00).
2. Ifv is a QSD with absoprtion parameter A, then A < Acr.
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Regimes for QSDs

Regimes Identified

Existence, Uniqueness and representation of QSDs are according to the following.

N’\Infinite MGF

P

Ex[exp(A7a)]

X,

Finite MGF

> Infinite MGF (only applicable to A ):

P “Perron Frobenius”: Reminiscent to positive recurrent MCs.

P Related works include: Seneta and Vere-Jones (1966), Ferrari, Kesten and Martinez
(1996).

> Finite MGF

P QSDs are completely characterized by Martin entrance boundaries indexed by A and
represented through a Choquet-type theorem.

P Construction of Martin boundary specific to this application, directly from pointwise
limits of normalized Green’s functions (no need for additional states, or analysis
through harmonic functions of dual process).

P> )\, may be in this regime.



Infinite MGF Regime

For x € S let
Tx = inf{t € N: X; = x}.
Theorem 4
Suppose A\ is in the infinite MGF regime. Then there exists a minimal QSD if and
only if

Ex[exp(Aerma), Ta < 7x] < oo for some x € S. 3)
In this case, the minimal QSD is unique and is given by

erer — 1

B Ex[exp(Acrma), Ta < 7x]

(4)

Ver(x)

Note.

» Stronger assumptions guarantee existence of “Yaglom Limit": v¢ as the quasi-limit
from any finitely supported initial distribution.

» Can be useful for simulations of minimal QSDs.

» Denominator is also equal to Ex[exp(Acr7a A 7x)] — 1. Limit as A — 07

Examples

> Finite S. In this case, v is a unique QSD (no other absorption rates).

> (Under standard assumptions): Subcritical branching. Here e*e = % where m is
the expectation of the offspring distribution.



Special Case: Coming Fast From Infinity

For K C S let

Tk =inf{t e N: X; € K}.
The following was inspired and implies (a special case) of the main result of Martinez,
Martin, and Villemonais (2014):

Theorem 5 _
Suppose that there exists some A > 0 and a nonempty finite K C S such that:

Ex[exp(ATa)] = oo for some x € S;
sup Ex[exp(ATa A k)] < co.
xZK

Then Aer € (0, )], and the conditions on Theorem 4 hold, v is the unique QSD, and
is the quasi-limiting distribution from any finitely supported initial distribution.

Note.

» Under additional assumptions: v, is the quasi-limiting distribution from any
initial distribution.

» The cited work did not assume irreducibility and does not provide a concrete
formula for the stationary distribution.
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Finite MGF Regime
Assumption. S is infinite.

The following is a slight generalization of Ferrari, Kesten, Martinez and Picco (1995):
Theorem 6
Let A > 0 be in the finite MGF regime.

1. Iflimy_ oo Ex[exp(A'7a)] = oo for some X € (0, ), then there exists a QSD
w/absorption parameter \.

2. Iflimsup,_, o Ex[exp(ATa)] < oo, then there does not exist a QSD w/
absorption parameter \.

Corollary 7 (Continuum of QSDs)
Let
Ao =inf{A>0: X[}moo Ex[exp(A7a)] = oo}

Then for every A € (o, Acr] there exists a QSD w/absorption parameter \.

Note. The existence of a minimal QSD requires a proof.

Examples
Immediate applications of the Corollary with Ay = 0.

» Birth & Death Chain on Z U {—1} with absorption at A = —1, satisfying our
assumptions.

» (Under standard assumptions): Subcritical branching.



Finite MGF Regime: Martin Boundary

Overview

> Classically, Martin exit / entrance boundaries are used to characterize harmonic
functions / invariant measures.

»> Our work applies this for the specific task of classifying QSDs w/absorption
parameter X rather than the more general class of e*-invariant measures (which
may be infinite).

» How exactly? One minor observation. In the finite MGF regime Green's functions
are normalizable allowing to construct a Martin boundary as limits of probability
measures.

Definition 3
Let X > 0 be in the finite MGF regime.

> Green’s function. G*(x,y) = dx(y) + So2,(e*p)"(x,y) = ExloeQry).ry<7al

1—Ey[exp(ATy), 7y <7pl"
G (x.y)

> Normzlized Green's Kernel. K*(x,y) = 1)’ where
Ex[exp(Ata)]—1
GMx,1) = X, e5 GM(x,y) = GA(x, 1) = EdeeQrall=l o

Next slides. Compactification M* of S so that the function M* 3 x — K*(x, ) is
continuous.
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Martin Compactification

Definition 4 (Martin Compactification)

> A sequence x = (xn : n € N) in S satisfying limp— o0 Xn = 00 is A-convergent if
the point-wise limit limp_ o0 Kk(x,77 -) exists.

» Two A-convergent sequences x and X are equivalent if
. A o A=
nin;o K™ (Xn,y) = nlmm K*(Xn,y) forally € S.

> Write [x] for the equivalency class of the convergent sequence x.
» Martin Boundary. Let

K>‘([x], )= lim K’\(xn7 ) < boundary points
n—o0o

M = {[x] : KM[x],)} < Martin Boundary

M» =Sudrm < Martin Space

» Metric: For a,b € M?, let

[ee]

1
p’\(a, b) = Zl o0 (|5a,s,, — Op,s,| + d(K>‘(a, Sn), K’\(b, sn))), where (sp : n € N)
n—
li—jl
T+[i—j]

are the distinct elements of S listed as a sequence and d(i,j) =
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Martin Compactification: Properties

Proposition 8 (Properties of the metric space)

> (M, p*) is a compact metric space and )M is closed.

> A sequence a = (a, : n € N) of elements of M is p» convergent if and only if
either

1. There exists a € N and ny € N such that a, = a for all n > ng:
> lim a,=a; or
n— oo

2. Condition 1 does not hold and there exists [a] € O M such that
limn— oo K*(an, ) = K*(fal, )

> i = [a].
n~l>moc an [e]

Let
A= {[x] € M : K*([x],-) is a QSD with absorption parameter A}.

Theorem 9 (Choquet Representation)
Let A\ > 0 be in the finite MGF regime. Then.
» There exists a QSD with absorption parameter X if and only if S* is not empty.

» In this case, v is a QSD with absorption parameter X if and only if there exists a
Borel probability measure F,, on M* satisfying F(S*) =1 and

v») = [ KNP, v € 5.
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Continuous Time

Simply put

All assumptions and results have the direct analogs in the
continuous-time setting

Notation
> We denote the process by X = (X¢ : t € Ry).
> Transition rate from x € S is gx € (0, ).
> For x € SU{A} we write  for the hitting time of x,
x =inf{t € Ry : Xy = x and X;— # x}.

> We denote the critical absorption parameter by .
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Continuous Time Example: Birth & Death
Notation
» S=2Z,U{-1} with A =—1.
» As usual A\, and p, are the birth and death rates from n, respectively.

> Let s be the absorption time starting from oo (well defined due to stochastic
domination).

» For the record:

o0 o0 n
1 i
E[S]ZE 5 E i, where7r0:1,7rn:|| . 17’7€N-
n=1 T 2 j=1 M

Our results give a simple and short proof to the following through applications of both
infinite and finite MGF regimes:

Theorem 10 (Van Doorn (1991), Theorem 3.2)
1. Suppose E[s] < co. Then < > 0, and there exists a unique QSD, which is also
minimal.

2. Suppose that E[s] = co. Then either o =0 and there are no QSDs or o >0
and for every A € (0, (] there exists a QSD with absorption parameter \.

3. When exists, a QSD with absorption parameter A > 0 is unique and given by the

formula
A 1

qy — A Ey[exp(A a), a < ]

Ay) = ,yES. (5)



Happy 70, Ross!



