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Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain (Xt : t ∈ Z+) on the states Z+ with
q ∈ ( 1

2
, 1).

I A unique stationary distribution π, a distribution invariant under the dynamics of
the chain. Moreover,

I For any initial distribution µ,

(∗) Pµ(Xt ∈ · ) →
t→∞

π, π ∼ Geom(1−
1− q

q
)− 1.

Now absorb (“kill”) the process at 0, setting p(0, 0) = 1.
I (∗) still holds, but with a trivial stationary distribution π = δ0.
I How would the process behave, conditioned on not being absorbed? Equivalently,

is there an conditional version of (∗),

Pµ(Xt ∈ · | X has not hit 0 by time t) →
t→∞

?

I Quasistationary distributions (QSDs) are probability distributions appearing as
such limits.

I “What would a biological system that has survived for a long time would look
like?”
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Figure: Birth & Death
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Definitions

Assumption 1
Let X = (Xt : t ∈ Z+) be MC on state space {0} ∪ S where S = {1, . . . ,N} or S = N,
with transition function p satisfying

1. The state 0 is a unique absorbing state: p(0, 0) = 1.

2. The restriction of p to nonabsorbing states(= S)is irreducible.

Let
ζ = inf{t ∈ N : Xt = 0},

the absorption time.

3. Px (ζ <∞) = 1 for some (equivalently all) x ∈ S.

4. Ex [βζ ] <∞ for some (equivalently all) x ∈ S and β > 1.

Definition 1 (QSD)
A probability measure ν on S is a Quasistationary Distribution if

Pν(Xt ∈ · | ζ > t) = ν(·)

for all t ∈ Z+.
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First Observations

Proposition 1

I (Necessary condition) If ν is a QSD, then under Pν , ζ has a geometric
distribution with parameter 1− λ ∈ (0, 1):

Pν(ζ > t) = λt , t ∈ Z+. (1)

I λ is called the survival probability for ν.

I (Eigenvector) A probability measure ν on S is a QSD with survival probability λ
if and only if

νp = λν. (2)

Equivalently, ν satisfies the non-linear eigenvalue equation:

νp = ((νp)1)ν.

Proposition 2 (Quasi-limiting ⇒ QSD)
If ν is a probability measure on S satisfying

lim
t→∞

Pµ(Xt ∈ · | ζ > t) = ν for some µ,

then ν is a QSD .
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Example: RW on an Interval

Example 1 (RW on an Interval)
Let N ≥ 2 be an integer, and consider the following transition function:

1 2 3 4 N-4 N-3 N-2 N-1
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rp
tio
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so
rp
tio

n
ρρ

1− 2ρ

Figure: RW absorbed outside an interval

Solving (2) yields a unique QSD νN , with a survival probability λN :{
νN(x) = CN sin( x

N
π) (CN = tan π

2N
);

λN(ρ) = ρ
2

cos π
N

+ (1− 2ρ)
(3)

Example 2 (Voter on a Cycle)
For N ≥ 2, consider the N-cycle ZN . Assign each vertex an opinion “yes” or “no”. At
each unit of time, uniformly sample a vertex and a random neighbor (CW or CCW),
and assign the neighbor’s opinion to the chosen vertex.

I Absorbing states are consensus states: all “yes” and all “no”.

I Consensus is eventually reached.
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Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:

I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Initial opinion assignment

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:

I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Interfaces

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:

I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Interfaces

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.

I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,
with equal probability to each direction.

I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

v

u

Figure: None of interface move

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.

I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

v

u

Figure: Interface moves

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.

I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Interface moves, completed

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

u

v

Figure: Interfaces meet and eliminated

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Interfaces cancel each other, completed

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

u v

Figure: Down to two interfaces

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



8/22

Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes” and “no”.

3. In terms of interfaces, each step either:
I Vertex & Neighbor in same cluster ⇒ no movement of interface.
I Vertex & Neighbor on two sides of an interface ⇒ an interface moves in one direction,

with equal probability to each direction.
I If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces ⇒ Looking for a QSD supported on
states with two clusters.

Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with ρ = 1

N
.

6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



9/22

Example: Voter on a Cycle, Summary

Recall that for the RW on an Interval from Example 1 we had, (3):{
νN(x) = tan( π

2N
) sin( x

N
π)

λN(ρ) = ρ
2

cos π
N

+ (1− 2ρ).

Proposition 3
The unique QSD for the Voter Model on ZN is a rotationally invariant distribution on
configurations with exactly one cluster of each opinion, satisfying the following
properties:

I The size of each cluster is distributed according to νN .

I The survival probability is λN( 1
N

).
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Minimal Survival Probability

Necessary Condition: Geometric Tails
In light of Proposition 1 and the irreducibility, if ν is a QSD with survival probability λ,

Ex [βζ ] <∞, x ∈ S , 1 < β < λ−1.

This explains Assumption 1 part 4, leading to

Definition 2 (Minimal Survival Probability)

I Define
λ0 = inf{λ < 1 : Ex [λ−ζ ] <∞ for some x ∈ S}. (4)

That is λ0 is the geometric tail of ζ under Px for some (any) x ∈ S.

I A QSD with survival probability λ0 is called a minimal QSD.

Corollary 4

1. 0 < λ0 < 1.

2. For a QSD, the survival probability λ satisfies λ0 ≤ λ < 1.

I Why “minimal” QSD? For a QSD with survival probability λ,

Eν [ζ] =
1

1− λ
≥

1

1− λ0
,
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QSD Regimes

Regimes Identified
Study of QSDs for a given survival probability λ is according to the following:

Regeneration

Ex [λ−ζ ]

Martin Boundary

=∞
(& λ=λ0)

<∞

General features
I Regeneration

I Reminiscent to positive recurrent MCs.
I In this regime, if a QSD exists, it is unique.

I Martin Boundary
I Reminiscent to Poisson Boundary for transient Markov chains.
I Applicable to λ0 in some cases.
I Easy to construct examples where uniqueness does not hold.
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Regeneration Regime

Definition 3 (Hitting times)
For x ∈ S let

τx = inf{t ≥ N : Xt = x}.

Theorem 5 (Regeneration)
Suppose Ex [λ−ζ0 ] =∞. Then p possesses a QSD with survival probability λ0 if and
only if

Ex [λ−ζ0 , ζ < τx ] <∞ for some x ∈ S . (5)

In this case the QSD with survival probability λ0 is unique, given by

ν(x) =
λ−1

0 − 1

Ex [λ−ζ0 , ζ < τx ]
(6)

Proposition 6 (Perron-Frobenius)
If S is finite, there exists a unique QSD. The QSD has survival probability λ0 and is
given by (6).
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Martin Boundary

Preface
I Recall that this regime corresponds to existence and characterization of QSDs for

survival probabilities λ satisfying Ex [λ−ζ ] <∞.

I As finite S was settled in Proposition 6: In what follows, we assume S = N.

I Two main and newly obtained results, Theorem 7 and Theorem 10. The latter
provides complete description of QSDs.

Theorem 7 (Asymptotics of GFs)
Suppose α > 1 satisfy Ex [αζ ] <∞. Then

1. If limx→∞ Ex [βζ ] =∞ for some β < α, then there exists a QSD corresponding
to the survival probability α−1.

2. If lim supx→∞ Ex [αζ ] <∞, then there does not exist a QSD corresponding to
the survival probability α−1.

Corollary 8 (Continuum of QSDs)
If limx→∞ Ex [βζ ] =∞ for some β < 1

λ0
, then for every λ ∈ [λ0, β

−1) there exists a

QSD corresponding to the survival probability λ.
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Corollary 8: Two examples

Example 3 (Birth & Death)
Consider any Birth & Death process on {0} ∪ N satisfying the conditions of
Assumption 1.

I Trivially, under Px , ζ ≥ x. Therefore the condition in Corollary 8 holds for all
β ∈ (1, λ−1

0 ).

I Corollary 8
=⇒ existence of a QSD for each survival probability in [λ0, 1)

Example 4 (Subcritical Branching)
Consider a branching process with nondegenrate offspring distribution X, satisfying
E [X ] < 1. Then

I A calculation with the generating function gives:

λ0 = E [X ],

lim
x→∞

Ex [βζ ] =∞ for all β ∈ (1, λ−1
0 ).

I Corollary 8
=⇒ existence of a QSD for each survival probability in [E [X ], 1).

I There exists a unique minimal QSD, obtained through Theorem 5.
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Martin Boundary

Overview
I Classically, Martin Boundary theory provides a compactification of the state space

of a transient Markov Chain through a set of positive harmonic functions. These
functions describe the tail of the chain: under the new topology the chain
converges almost surely, with the limit viewed as where the process “exits” the
state space.

I We borrow the ideas and obtain a similar compatification of the state space. In
our work, the time arrow is reversed: we describe the behavior of the process
according to how it is “coming from infinity”.

I The result is a representation of all QSDs as a convex combination of the QSDs
obtained as limits of Green’s functions.

Preliminaries
I Fix α > 1 satisfying Ex [αζ ] <∞.

I Define

Kα(x , y) =
α− 1

Ex [αζ − 1]︸ ︷︷ ︸
normalizing

Ex [
∑
s<ζ

αsδy (Xs)],

`1-normalized (in the second variable) Green’s function for αp.
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Martin Compactification: Construction

Definition 4 (Martin Compactification)

I A sequence x = (xn : n ∈ N) in N satisfying limn→∞ xn =∞ is convergent if
limn→∞ Kα(xn, y) exists for all y ∈ N.

I Two convergent sequences x and x̄ are equivalent if

lim
n→∞

Kα(xn, y) = lim
n→∞

Kα(x̄n, y) for all y ∈ N.

I Write [x] for the equivalency class of the convergent sequence x.

I Martin Boundary: Let

Kα([x], ·) = lim
n→∞

Kα(xn, ·) ← boundary points

∂αM = {[x] : Kα([x], ·)} ← Martin Boundary

Mα = N ∪ ∂αM ← Martin Space

I Metric: For a, b ∈ Mα, let

ρα(a, b) =
∞∑
n=1

1

2n

(
|δa,n − δb,n|+ d(Kα(a, n),Kα(b, n))

)
,

where d(i , j) = |i−j|
1+|i−j| .
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Martin Compactification: Properties

Proposition 9 (Properties of the metric space)

I (Mα, ρα) is a compact metric space and ∂αM is closed.
I A sequence a = (an : n ∈ N) of elements of Mα is ρα convergent if and only if

either
1. There exists a ∈ N and n0 ∈ N such that an = a for all n ≥ n0:

I lim
n→∞

an = a; or

2. Condition 1 does not hold and there exists [a] ∈ ∂αM such that
limn→∞ Kα(an, ·) = K([a], ·)

I lim
n→∞

an = [a].

Explanation
Roughly speaking (avoiding technical caveats):

I Each element of x ∈ N is identfied with the probability measure Kα(x , ·).

I Mα is obtained by closing this set with respect to pointwise limits, with set of
“new” elements being ∂αM (these limits may be sub-probability measures).

I The metric ρα corresponds to pointwise convergence.
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Martin Boundary: Result

Let
Kα = {[x] ∈ ∂αM : Kα([x], ·) is a QSD}.

Theorem 10 (Martin/Choquet Representation)
Let α > 1 satisfy Ex [αζ ] <∞. If ν is a QSD w/survival probability α−1 then there
exists a Borel probability measure F̄ν on ∂αM satisfying F̄ν(Kα) = 1 and

ν(y) =

∫
∂αM

Kα([x], y)dF̄ν([x]).

Bottom line
I Every QSD is a convex combination of elements of Kα.
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Theorem 10: Immediate Application

We revisit a previously introduced example:

Example 3: Birth & Death

I Corollary 8 ⇒ a QSD for every survival probability in [λ0, 1).

I Theorem 10 ⇒ a unique QSD for every survival probability in [λ0, 1).
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Example: QSDs on a Tree

Example 5 (Example: QSDs on a Tree)

ρ

y1

xn

y2
y0

y ′2

Consider the
d-regular tree with root ρ. Evolution:

I From each state other than ρ move
towards ρ with probability q > 1

2
.

I From each state move to
a one of the neighbors away from
the root with probability 1− q,
uniformly over the neighbors.

I From the root: move to the
absorbing state ∆ with probability
δ ∈ (0, q), and stay put with
probability 1− (1− q)− δ = q − δ.
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Example: QSDs on a Tree, completed

Proposition 11 (Minimal Survival Probability)
Consider the Tree from Example 5. Let

I λρ = 2
√

q(1− q)

I Let δcr =
√
q(
√
q −
√

1− q).

Then

λ0 = λ0(δ) =

{
q − δ + q(1−q)

q−δ δ ∈ (0, δcr )

λcr δ ∈ [δcr , q]
.

δ ∈ (0, δcr ) {δcr} (δcr , q]
λ0 < λρ = λρ

Eρ[λ−ζ0 ] =∞ <∞

Proposition 12 (QSDs from Kα)

1. For λ ≤ λ0 satisfying Eρ[λ−ζ ] <∞ and every branch, limn→∞ Kλ
−1

(xn, ·) exists
along any sequence tending to infinity along the branch and is a QSD.

2. The QSDs obtained along each of the branches are distinct.

3. If Eρ[λ−ζ0 ] =∞, there exists a unique QSD with survival probability λ0, obtained
through Theorem 5.

Theorem 10 + Proposition 12 ⇒ All QSDs for the model.
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Thank you!


