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Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain (X; : t € Z4) on the states Z4 with
qge(3,1).
> A unique stationary distribution 7, a distribution invariant under the dynamics of
the chain. Moreover,
> For any initial distribution p,

1—gq
(%) Pu(Xt € ) LT T Geom(1 — T) -1

Figure: Birth & Death



Motivating Example: Birth & Death Chain

Consider the discrete-time Birth & Death chain (X; : t € Z4) on the states Z4 with
qge(3,1).
> A unique stationary distribution 7, a distribution invariant under the dynamics of
the chain. Moreover,
> For any initial distribution p,

1—gq
(%) Pu(Xt € ) LT T Geom(1 — T) -1

Now absorb (“kill") the process at 0, setting p(0,0) = 1.
> (x) still holds, but with a trivial stationary distribution = = &q.
» How would the process behave, conditioned on not being absorbed? Equivalently,
is there an conditional version of (x),

Pu(Xt € - | X has not hit 0 by time t) tj ?
oo

» Quasistationary distributions (QSDs) are probability distributions appearing as

such limits.
P> “What would a biological system that has survived for a long time would look
like?”
1
1-q 1-gq 1-gq
Q . S ) P 5 PR R
vxq/ \7/ \7/

Figure: Birth & Death killed at 0
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Definitions

Assumption 1

Let X = (X;: : t € Zy) be MC on state space {0} US where S ={1,...,N} or S =N,
with transition function p satisfying

1. The state 0 is a unique absorbing state: p(0,0) = 1.
2. The restriction of p to nonabsorbing states(= S )is irreducible.

Let
¢=inf{t e N: X; =0},

the absorption time.

3. Px(¢ < 00) =1 for some (equivalently all) x € S.
4. E4[B°] < oo for some (equivalently all) x € S and 8 > 1.

Definition 1 (QSD)
A probability measure v on S is a Quasistationary Distribution if
P,(Xee-|¢(>t)=v()

for allt € Z.



First Observations

Proposition 1

» (Necessary condition) If v is a QSD, then under P,, { has a geometric
distribution with parameter 1 — X € (0,1):

P,(¢>t)=), teZy. (1)

» )\ is called the survival probability for v.

» (Eigenvector) A probability measure v on S is a QSD with survival probability X
if and only if
vp = Av. 2)

Equivalently, v satisfies the non-linear eigenvalue equation:

vp = ((vP)D)r.

Proposition 2 (Quasi-limiting = QSD)

If v is a probability measure on S satisfying

lim Pu(X: €| ¢ >t)=v for some p,
t—o00

then v is a QSD .



Example: RW on an Interval

Example 1 (RW on an Interval)
Let N > 2 be an integer, and consider the following transition function:

= pp >
Z T~ 2
Eom® o OO OOl
=] A =]
Figure: RW absorbed outside an interval
Solving (2) yields a unique QSD vy, with a survival probability \y:
vn(x) = Cysin({m) (Cn =tan 55); 3)
An(p) = § cos §; + (1 —2p)

Example 2 (Voter on a Cycle)
For N > 2, consider the N-cycle Z. Assign each vertex an opinion “yes” or “no”. At
each unit of time, uniformly sample a vertex and a random neighbor (CW or CCW),

and assign the neighbor’s opinion to the chosen vertex.
» Absorbing states are consensus states: all “yes” and all “no”.

» Consensus is eventually reached.



Example: Voter on the Cycle
Evolution

1. Some non-consensus initial opinion assignment.

Figure: Initial opinion assignment
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Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.
2. Each non-absorbing state has an even number of interfaces between clusters of

“yes" and “no
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Figure: Interfaces
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Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.
2. Each non-absorbing state has an even number of interfaces between clusters of

“yes" and “no
In terms of interfaces, each step either:

3.
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Figure: Interfaces



Example: Voter on the Cycle

Evolution
Some non-consensus initial opinion assignment.

1.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes" and “no".

3. In terms of interfaces, each step either:

P Vertex & Neighbor in same cluster = no movement of interface.

o
®lelo

Figure: None of interface move



Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.
2. Each non-absorbing state has an even number of interfaces between clusters of

“yes" and “no
3. In terms of interfaces, each step either:
P Vertex & Neighbor in same cluster = no movement of interface.
P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,

with equal probability to each direction.
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Figure: Interface moves



Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of

“yes” and "no’.
3. In terms of interfaces, each step either:

P Vertex & Neighbor in same cluster = no movement of interface.
P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,

with equal probability to each direction.
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Figure: Interface moves, completed



Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of
“yes" and “no".

3. In terms of interfaces, each step either:

P Vertex & Neighbor in same cluster = no movement of interface.
P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,

with equal probability to each direction.
P If interfaces meet, they are both eliminated.

o
°lelo

Figure: Interfaces meet and eliminated



Example: Voter on the Cycle
Evolution
1. Some non-consensus initial opinion assignment.
2. Each non-absorbing state has an even number of interfaces between clusters of
“yes" and “no".

3. In terms of interfaces, each step either:

P Vertex & Neighbor in same cluster = no movement of interface.

P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,
with equal probability to each direction.

P If interfaces meet, they are both eliminated.
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Figure: Interfaces cancel each other, completed



Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.
2. Each non-absorbing state has an even number of interfaces between clusters of
“yes" and “no".

3. In terms of interfaces, each step either:

P Vertex & Neighbor in same cluster = no movement of interface.
P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,

with equal probability to each direction.
P If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces = Looking for a QSD supported on
states with two clusters.
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Figure: Down to two interfaces
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Evolution
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Evolution
1. Some non-consensus initial opinion assignment.

2. Each non-absorbing state has an even number of interfaces between clusters of

“yes" and “no"”.

3. In terms of interfaces, each step either:

P Vertex & Neighbor in same cluster = no movement of interface.

P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,
with equal probability to each direction.

P If interfaces meet, they are both eliminated.

4. Eventually, the system has two interfaces = Looking for a QSD supported on
states with two clusters.
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Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW
from Example 1, with p = %



Example: Voter on the Cycle

Evolution
1. Some non-consensus initial opinion assignment.
2. Each non-absorbing state has an even number of interfaces between clusters of

“yes" and “no"”.

3. In terms of interfaces, each step either:
P Vertex & Neighbor in same cluster = no movement of interface.
P Vertex & Neighbor on two sides of an interface = an interface moves in one direction,
with equal probability to each direction.
P If interfaces meet, they are both eliminated.
Eventually, the system has two interfaces = Looking for a QSD supported on

4.
states with two clusters.
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Figure: Down to two interfaces, completed

5. Per Step 3, the size of the remaining “yes” cluster performs a symmetric RW

from Example 1, with p = N
6. Comeback: QSD problem has been reduced to that of the RW from Example 1.



Example: Voter on a Cycle, Summary

Recall that for the RW on an Interval from Example 1 we had, (3):

vn(x) = tan(5g) sin(§ )
M(p) = £ cos & + (1 - 2p).

Proposition 3
The unique QSD for the Voter Model on Zy is a rotationally invariant distribution on
configurations with exactly one cluster of each opinion, satisfying the following
properties:

» The size of each cluster is distributed according to vy.

» The survival probability is )\N(%)-
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Minimal Survival Probability

Necessary Condition: Geometric Tails

In light of Proposition 1 and the irreducibility, if v is a QSD with survival probability A,

Ex[8%] < o0, x€ S5, 1< B <A™

This explains Assumption 1 part 4, leading to
Definition 2 (Minimal Survival Probability)

» Define
Ao = inf{\ < 1: Ex[A"¢] < oo for some x € S}.

That is Ao is the geometric tail of ¢ under Py for some (any) x € S.

> A QSD with survival probability Ao is called a minimal QSD.

Corollary 4

1.O<X <1

2. For a QSD, the survival probability \ satisfies \g < \ < 1.
» Why “minimal” QSD? For a QSD with survival probability A,

1 1

E, =—2 )
] 1-X2 7" 1-X

4)
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QSD Regimes

Regimes Identified
Study of QSDs for a given survival probability X is according to the following:
Regeneration

% )\4%0\
—oP

Ex[2¢]
Martin Boundary

General features
» Regeneration
P Reminiscent to positive recurrent MCs.
P In this regime, if a QSD exists, it is unique.
» Martin Boundary

P Reminiscent to Poisson Boundary for transient Markov chains.
P Applicable to )¢ in some cases.
P Easy to construct examples where uniqueness does not hold.
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Regeneration Regime

Definition 3 (Hitting times)
For x € S let
% = inf{t > N: X; = x}.

Theorem 5 (Regeneration)

Suppose EX[AJC] = 00. Then p possesses a QSD with survival probability \g if and
only if
EX[A(;(,C < 7x] < oo for some x € S. (5)

In this case the QSD with survival probability g is unique, given by

—1
Mt-1

l/(X) = EX[AO,(’C < Tx]

(6)

Proposition 6 (Perron-Frobenius)

If S is finite, there exists a unique QSD. The QSD has survival probability Ao and is
given by (6).
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Martin Boundary

Preface

» Recall that this regime corresponds to existence and characterization of QSDs for
survival probabilities \ satisfying Ex[A~¢] < oo.

P> As finite S was settled in Proposition 6: In what follows, we assume S = N.

» Two main and newly obtained results, Theorem 7 and Theorem 10. The latter
provides complete description of QSDs.

Theorem 7 (Asymptotics of GFs)
Suppose o > 1 satisfy Ex[a’] < co. Then

1. Iflimy— o0 Ex[BS] = 0o for some B < «, then there exists a QSD corresponding

to the survival probability o~ !.

2. Iflimsup,_, ., Ex[a’] < oo, then there does not exist a QSD corresponding to
1

the survival probability o™ *.
Corollary 8 (Continuum of QSDs)
If limy—s o0 EX[BC] = oo for some 8 < %0 then for every X € [\, 5_1) there exists a
QSD corresponding to the survival probability .
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Corollary 8: Two examples

Example 3 (Birth & Death)

Consider any Birth & Death process on {0} UN satisfying the conditions of
Assumption 1.

> Trivially, under Px, { > x. Therefore the condition in Corollary 8 holds for all
B e (LAY

Corollary 8
> oro:s;ry existence of a QSD for each survival probability in [Xg, 1)

Example 4 (Subcritical Branching)

Consider a branching process with nondegenrate offspring distribution X, satisfying
E[X] < 1. Then

» A calculation with the generating function gives:
Xo = E[X],
lim Ex[8%] = oo for all B € (1,0571).
X—> 00

Corollary 8
> orgry existence of a QSD for each survival probability in [E[X], 1).

» There exists a unique minimal QSD, obtained through Theorem 5.



Martin Boundary

Overview

» Classically, Martin Boundary theory provides a compactification of the state space
of a transient Markov Chain through a set of positive harmonic functions. These
functions describe the tail of the chain: under the new topology the chain
converges almost surely, with the limit viewed as where the process “exits” the
state space.

» We borrow the ideas and obtain a similar compatification of the state space. In
our work, the time arrow is reversed: we describe the behavior of the process
according to how it is “coming from infinity".

» The result is a representation of all QSDs as a convex combination of the QSDs
obtained as limits of Green's functions.

Preliminaries
> Fix o > 1 satisfying Ex[a€] < oo.

» Define
Elac—1] Ex [Zoa
\L,_/ s<¢

K*(x,y) =

normalizing

£1-normalized (in the second variable) Green’s function for ap.
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Martin Compactification: Construction
Definition 4 (Martin Compactification)

> A sequence x = (xn : n € N) in N satisfying limp— o0 xn = 00 is convergent if
limp—s oo K%(xn,y) exists for all y € N.

» Two convergent sequences x and X are equivalent if
lim K%(xn,y) = lim K%(Xa,y) forall y € N.
n— o0 n— o0

> Write [x] for the equivalency class of the convergent sequence x.

» Martin Boundary: Let

K*([x],-) = im K*(xn,-) + boundary points
O“M = {[x] : K*([x],")} <+ Martin Boundary
M* =NUO*M < Martin Space

» Metric: For a,b € M%, let

21
p*(ab) = > (182, — Op,a| + d(K*(a, n), K*(b, n))),
n=1

li—Jjl

where d(i,j) = T
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Martin Compactification: Properties

Proposition 9 (Properties of the metric space)

> (M, p®™) is a compact metric space and 0*M s closed.

> A sequence a = (an : n € N) of elements of M® is p* convergent if and only if
either
1. There exists a € N and ny € N such that a, = a for all n > ng:

> lim a, =a;or
n— oo

2. Condition 1 does not hold and there exists [a] € O M such that
limp— oo K%(an, -) = K([a], -)

> i =
"me ap = [a].

Explanation
Roughly speaking (avoiding technical caveats):
» Each element of x € N is identfied with the probability measure K%(x,-).

> M< is obtained by closing this set with respect to pointwise limits, with set of
“new” elements being 9*M (these limits may be sub-probability measures).

» The metric p® corresponds to pointwise convergence.
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Martin Boundary: Result

Let
K* ={[x] € 9*M : K*([x],-) is a QSD}.

Theorem 10 (Martin/Choquet Representation)

Let a > 1 satisfy Ex[a¢] < oco. If v is a QSD w/survival probability a~! then there
exists a Borel probability measure F,, on 8*M satisfying F,(K®) = 1 and

v = [ K () ()

Bottom line

> Every QSD is a convex combination of elements of K.
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Theorem 10: Immediate Application

We revisit a previously introduced example:
Example 3: Birth & Death

» Corollary 8 = a QSD for every survival probability in [Ag, 1).
» Theorem 10 = a unique QSD for every survival probability in [Ag, 1).
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Example: QSDs on a Tree

Example 5 (Example: QSDs on a Tree)

Consider the
d-regular tree with root p. Evolution:

» From each state other than p move
towards ith babilit; L
p with probability g > 5.

» From each state move to
a one of the neighbors away from
the root with probability 1 — q,
uniformly over the neighbors.

» From the root: move to the
absorbing state A with probability
6 € (0, q), and stay put with
probability 1 — (1—q) —§ = q— 4.
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Example: QSDs on a Tree, completed

Proposition 11 (Minimal Survival Probability)
Consider the Tree from Example 5. Let

> A\ =2/a0—q)

> Let b = /d(\/G— VI— 7).
Then

_ a(1—q)
Ao = Xo(d) = -0+ 5= J€ (0,0¢) .
Aer 0 € [6cr7 q]
)€ (0,0¢r) | {0cr} [ (dcr, q]
Ao <X =N
Exlr ‘] = | <o

Proposition 12 (QSDs from K<)

1. For A < \g satisfying Ep[)\*g] < 0o and every branch, limp_ !<)‘7l(x,,7 -) exists
along any sequence tending to infinity along the branch and is a QSD.

2. The QSDs obtained along each of the branches are distinct.

3. IfE, [)\O_C] = oo, there exists a unique QSD with survival probability \g, obtained
through Theorem 5.

Theorem 10 + Proposition 12 = All QSDs for the model.
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