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Overview

Quasistationary distributions (QSDs) relate to the long-term behavior of processes which eventually reach some absorbing state (a state the process

cannot leave) as limits (if exist) of the distribution of the state of the process, conditioned on not being absorbed. They are, in a sense, the mathematical

version of the description of life on earth in the distant future, assuming there will be life on earth in the distant future...

Study of QSDs dates to at least as early as Wright’s work [8] on gene frequencies in finite populations and Yaglom’s [9] work on branching processes.

There has been extensive research on QSDs with focus on concrete processes exhibiting quasistionarity (e.g. branching processes and birth and death

chains) or on sufficient conditions for existence of QSDs, convergence results, and, recently, the problem of sampling from QSDs.

We present a comprehensive approach for characterizing and representing QSDs for Markov Chains under standard assumptions (our approach is

complete only in the discrete-time setting). This is done through adaption and application of classical methods in the study of Markov chains to the

context of QSDs.

Hypotheses and Preliminary Results

Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process.Process. X = (Xt : t ∈ Z+ or t ∈ R+), a Markov chain on state space S ∪ {∆}, with S finite or countably infinite.

Hitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting timesHitting times. Let ∅ 6= K ( S. Define the hitting time of K

τK :=

{
inf{n ∈ N : Xn ∈ K} discrete time

inf{t ∈ (0,∞) : Xt− 6∈ K, Xt ∈ K} continuous time

For each state x, write τx as shorthand for τ{x}.

H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.H1.
• S is an irreducible class.

• If X is a continuous-time process, also assume that the holding time at each state x ∈ S is exponential with parameter qx ∈ (0,∞).

H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2.H2. ∆ is an absorbing state, and the hitting time of ∆, τ∆ is finite a.s.

QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD.QSD. A QSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSDQSD is a probability measure ν on S satisfying that for some probability measure µ on S

Pµ(Xt ∈ · | τ∆ > t) →
t→∞

ν(·). (1)

In fact, this is equivalent to Pν(Xt ∈ · | τ∆ > t) = ν(·) for all t > 0 (e.g. [5], also for the proof of the following).

Proposition 1 (Geometric/Exponential Absorption Time) If ν is a QSD, then there exists λν ∈ (0,∞), the absorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameterabsorption parameter,

satisfying

Pν(τ∆ > t) = e−λνt, for all t ≥ 0. (2)

Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter.Critical Parameter. Let

λcr := sup{λ ≥ 0 : Ex[exp(λτ∆)] <∞ for some x ∈ S}.

Corollary 1

• If λcr = 0, there are no QSDs.

• If ν is a QSD, then λν ∈ (0, λcr].

H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3. λcr > 0.

MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes.MGF Regimes. Our analysis is according to the following dichotomy:

• λcr is in the infinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regimeinfinite MGF regime if Ex[exp(λcrτ∆)] =∞ for some (equivalently, all) x ∈ S.

• A parameter λ(≤ λcr) is in the finite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regimefinite MGF regime if Ex[exp(λτ∆)] <∞.

Infinite MGF Regime: Existence and Representation

Theorem 1 Suppose λcr is in the infinite regime.

1. There exists a QSD with absorption parameter λcr if and only there exists a finite ∅ 6= K ( S,

Ex[exp(λcrτ∆ ∧ τK)] <∞ for some x ∈ S. (3)

In this case there exists a unique QSD, νcr, with an absorption parameter λcr, given by

νcr(x) =
1

Ex[exp(λcrτ∆), τ∆ < τx]
×

{
eλcr − 1 discrete time
λcr

qx−λcr continuous time
(4)

2. If, in addition,

Ex[exp(λcrτx)τx, τx < τ∆] <∞ for some x ∈ S, (5)

Then (1) holds for any finitely supported µ, with ν = νcr. If X is a discrete-time chain, the convergence is along multiples of the

period of p|S

Example 1 (Subcritical Branching Process) Let X be a branching process with offspring distribution B with 0 < E[B] < 1 (subcritical

branching). Here ∆ = 0 and S is determined by the support of B. Then

1. e−λcr = E[B].

2. λcr is in the infinite regime and the first condition of Theorem 1 holds (e.g. with K = min{k ≥ 1 : P (B = k) > 0}.

3. The second condition of Theorem 1 holds if and only if E[B log+B] < ∞. Yet, the conclusion holds without this extra assumption

(e.g. [2]).

Infinite MGF Regime: the Uniform Case

In the next theorem we drop H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3.

Theorem 2

1. Suppose that there exists λ̄ > 0 and a finite ∅ 6= K ( S such that

Ex[exp(λ̄τ∆)] =∞ for some x ∈ S and (6)

sup
x
Ex[exp(λ̄τ∆ ∧ τK)] <∞. (7)

Then λcr ∈ (0, λ̄], λcr is in the infinite regime, and both conditions of Theorem 1 hold.

2. If, in addition, there exists some x0 ∈ S and t0 > 0 such that

inf
x
P (τx0 < τ∆|τ∆ > t0) > 0. (8)

then the convergence (1) holds for all µ, with ν = νcr. In the discrete-time setting the convergence is along multiplies of the period of

p|S.

This theorem was inspired by the main result in [4]. There the authors consider a continuous-time Markov chain satisfying (6),(7) and (8), but replace

irreducibility with a weaker condition. They use the assumptions to prove convergence of the conditional distributions in the total variation norm, with

an explicit exponential bound, indirectly proving existence and uniqueness of a QSD. Our version of the theorem is much weaker, yet it identifies this

QSD as νcr.

Example 2 When S is finite, both conditions of Theorem 2 hold.

Finite MGF Regime: Existence Results

As the finite state space case is settled in Example 2, we add:

H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0.H0. S is infinite.

Theorem 3 Let λ > 0 be in the finite regime.

• If for some λ′ ∈ (0, λ), limx→∞Ex[exp(λ′τ∆)] =∞, then there exists a QSD with absorption parameter λ.

• If supxEx[exp(λτ∆)] <∞ then there does not exist a QSD with absorption parameter λ.

Finite MGF Regime: Existence Results, continued

Corollary 2 Let

λ0 := inf{λ ∈ (0, λcr) : lim
x→∞

Ex[exp(λτ∆)] =∞} (convention: inf ∅ =∞).

There exists a QSD with absorption parameter λ for every λ ∈ (λ0, λcr].

Example 3 (Subcritical Branching, continued) Let X be as in Example 1 and assume further that P (B ∈ {0, 1}) < 1. Recall that

E[B] = e−λcr. In this case, Ex[τ∆] →
x→∞

∞, therefore Corollary 2 yields the existence of a QSD with absorption parameter λ for every

λ ∈ (0, λcr]. This is well-known (e.g. [2]).

Example 4 (Infinity as a Natural Boundary) In [3] the authors prove the existence of a QSD under the assumption that for all

t > 0,

lim
x→∞

Px(τ∆ ≤ t) = 0.

As this condition implies λ0 = 0, Corollary 2 gives a continuum of QSDs.

• In our proof of Theorem 3 we applied a tightness argument from [3].

Example 5 (Birth and Death Chains) Let X be a continuous-time birth and death chain on Z+ ∪ {−1}, with birth rates (λk : k ∈
Z+ ∪ {−1}) and death rates (µk, k ∈ Z+). We assume λ−1 = 0 and λkµk ∈ (0,∞) for k ∈ Z+. Thus here, S = Z+ and ∆ = −1. Letting

π0 := 0, πn :=
∏n

j=1
λj−1
µj
, n ∈ N, then we assume

∑∞
n=0

1
λnπn

= ∞, which is equivalent to τ∆ < ∞ a.s. Let τ be the random variable on

[0,∞] whose CDF is given by

P (τ ≤ t) = lim
x→∞

Px(τ∆ ≤ t).

Thus, τ is the absorption time, starting from ∞. Moreover, E[τ ] =
∑∞

n=1
1

λnπn

∑∞
i=n+1 πi. (details on the series can be found in [1]).

The following alternatives hold:

1. E[τ ] <∞. In this case the conditions of Theorem 2 hold. In particular, there exists a unique QSD which is minimal and convergence

in (1) holds for any µ, with ν = νcr.

2. E[τ ] =∞. Then either

(a) λcr = 0 and no QSDs exist.

(b) λcr > 0, and then Corollary 2 holds with λ0 = 0. In particular, there exists a QSD with absorption parameter λ for all λ ∈ (0, λcr].

This result, along with identification of the QSDs for each absorption parameter were originally obtained in [7] through detailed analysis

of the spectral representation of the transition function for X. The approach we present here is based on routine analysis of moments.

Identification of the QSDs can be further obtained through Theorem 4.

Finite MGF Regime: Characterization

In this section assume that X is a discrete-time chain, and that H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0, H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1,H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2 and H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3 hold.

Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels.Green’s Kernels. For λ > 0 in the finite regime, define the Green’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s functionGreen’s function, Gλ(·, ·):

Gλ(x, y) :=

∞∑
n=0

eλnPx(Xn = y) =
Ex[exp(λτy), τy < τ∆]

1− Ey[exp(λτy), τy < τ∆]
.

For every x ∈ S, Gλ(x, ·) is a finite measure on S with total mass

Gλ(x,1) =
Ex[exp(λτ∆)]− 1

eλ − 1
.

Normalize, denoting the resulting probability measure by Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·)Kλ(x, ·):

Kλ(x, y) :=
Gλ(x, y)

Gλ(x,1)
= · · · = Ex[exp(λτ∆), τy < τ∆]

Ex[exp(λτ∆)]− 1
× eλ − 1

Ey[exp(λτ∆), τ∆ < τy]
.

Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary.Martin (Entrance) Boundary. • A sequence x = (xn ∈ S : n ∈ N) with limn→∞ xn =∞ is λ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergentλ-convergent if

Kλ(x, y) := lim
n→∞

Kλ(xn, y) exists for all y ∈ S.

• The λ-convergent sequences x and x′ are λ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalentλ-equivalent if Kλ(x, ·) = Kλ(x′, ·), writing [x] for the equivalence class and Kλ([x], ·) for Kλ(x, ·).
• The Martin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin BoundaryMartin Boundary ∂λS is the set of equivalence classes of λ-convergent sequences.

• The Martin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin TopologyMartin Topology is a metric on S ∪ ∂λS which makes it compact, with ∂λS closed.

• Let

Hλ := {[x] ∈ ∂λS : Kλ([x], ·) is a QSD}.

Proposition 2

• All elements of Hλ are QSDs with absorption parameter λ.

• [x] ∈ Hλ if and only if (Kλ(xn, ·) : n ∈ N) is tight for every x ∈ [x].

The following Choquet-type theorem holds:

Theorem 4 Suppose that λ is in the finite regime. If ν is a QSD with absorption parameter λ, then there exists a Borel probabilty

measure Fν on ∂λS with Fν(H
λ) = 1 such that

ν(y) =

∫
[x]∈∂λS

Kλ([x], y)dFν([x]).

Remarks:

1. All QSDs with absorption parameter λ are in the convex hull of Hλ.

2. The construction and the arguments are essentially the same as for the Martin (exit) boundary (e.g. [6]) with differences in details.

3. All QSDs are excessive measures for p (measures satisfying νp ≤ ν on S∪{∆}), and representation theory for excessive measures was developed

decades ago. The main contributions here are:

(a) Identifying the kernels which generate all QSDs for a given absorption parameter rather concretely, not as an abstract combination of

excessive measures;

(b) Raise the awareness to the relevance of the Martin boundary in the study of QSDs.

Example 6 (Rooted Tree) Consider a discrete-time nearest neighbor Markov chain on a rooted tree with a single absorbing state ∆

whose only neighbor is the root. We will further assume that H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0–H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3H3 hold.

For every λ in the finite regime, and every sequence (xn : n ∈ N) tending to infinity along an infinite branch, the limit limn→∞K
λ(xn, ·)

exists and is a QSD. Thus Hλ is indexed by the infinite branches.

Discrete-time birth and death chains are one special case.
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